
Week 12 - Wednesday

 What did we talk about last time?
 Exam 2 post mortem
 Java Collections Framework
 List
 ArrayList
 LinkedList

JOHN PRINE
1946-2020

 The List<E> interface is one of the biggest you'll ever see
 Here are a few important methods in it

Returns Method Description

boolean add(E element) Adds element to the end of the list

void add(int index, E element) Adds element before index

boolean addAll(Collection<? extends E> collection) Adds everything from collection to this list

void clear() Removes everything from this list

boolean contains(Object object) Returns true if this list contains object

E get(int index) Return the element at index

int indexOf(Object object) Returns the first index where something that
equals object can be found

boolean isEmpty() Returns true if the list is empty

boolean remove(int index) Remove the element at index

E set(int index, E element) Set the item at location index to element

int size() Returns the size of the list

 Create an ArrayList of String values to hold
 Prompt the user for a positive integer
 From 1 up to the number they enter, add the String equivalent

of that number to the list
 Exceptions:
 If the number is divisible by 3, add Fizz to the list instead
 If the number is divisible by 5, add Buzz to the list instead
 If the number is divisible by both, add Fizz Buzz to the list instead

 Output the list
 Example for 16:
 1, 2, Fizz, 4, Buzz, Fizz, 7, 8, Fizz, Buzz, 11,
Fizz, 13, 14, Fizz Buzz, 16

 There are n prisoners standing in a circle, about be executed
 The executions are carried out starting with the kth person,

and removing every successive kth person going clockwise
until no one is left

 Prompt the user for n and k
 Determine where a prisoner should stand in order to be the

last survivor
 For example, if n = 5 and k = 2, the order of executions would

be [1, 3, 0, 4, 2] (assuming 0-based numbering)
 Hint: Use a list and repeatedly remove indexes

 Maps are a kind of data structure that holds a (key, value) pair
 For example, a map might use social security numbers as keys and

have Person objects as the value
 In a map, the keys must be unique, but the values could be

repeated
 Both Java and C++ use the name map for the symbol table classes

in their standard libraries
 Python calls it a dictionary (and supports it in the language, not

just in libraries)
 Maps are also called symbol tables

 Maps are for you can imagine storing as
data with two columns, a key and a value

 In this way you can look up the weight of
anyone

 However, the keys must be unique
 Ahmad and Carmen might weigh the same, but

Ahmad cannot weight two different values
 There are multimaps in which a single key

can be mapped to multiple values
 But they are used much less often
 All you really need is a map whose values are

lists

Name
(Key)

Weight
(Value)

Ahmad 210

Bai Li 145

Carmen 105

Deepak 175

Erica 205

 The Java interface for maps is, unsurprisingly, Map<K,V>
 K is the type of the key
 V is the type of the value
 Yes, it's a container with two generic types

 Any Java class that implements this interface can do the
important things that you need for a map
 get(Object key)
 containsKey(Object key)
 put(K key, V value)

 Because the Java gods love us, they provided two main
implementations of the Map interface

 HashMap<K,V>
 Hash table implementation
 To be useful, type Kmust have a meaningful hashCode()method

 TreeMap<K,V>
 Balanced binary search tree implementation
 To work, type Kmust implement the compareTo()method
 Or you can supply a comparator when you create the TreeMap

 Let's see some code to keep track of some people's favorite
numbers

Map<String,Integer> favorites = new TreeMap<String,Integer>();

favorites.put("John", 42); // Autoboxes int value
favorites.put("Paul", 101);
favorites.put("George", 13);
favorites.put("Ringo", 7);
if(favorites.containsKey("George"))

System.out.println(favorites.get("George"));

 Java also provides an interface for sets
 A set is like a map without values (only keys)
 All we care about is storing an unordered collection of things
 The Java interface for sets is Set<E>
 E is the type of objects being stored

 Any Java class that implements this interface can do the
important things that you need for a set
 add(E element)
 contains(Object object)

 As with maps, there are two main implementations of the
Set interface

 HashSet<E>
 Hash table implementation
 To be useful, type Emust have a meaningful hashCode()method

 TreeSet<E>
 Balanced binary search tree implementation
 To work, type Emust implement the compareTo()method
 Or you can supply a comparator when you create the TreeSet

 An anagram is a word or phrase arrived at by scrambling the
letters of another word or phrase

 For example, "silent" is an anagram of "listen"
 We can use a HashMap to determine if one String is an

anagram of another
 We'll make a Map<Character,Integer> so that we can

store the number of times a letter appears

 Complete the method below that determines if string1 and string2
are anagrams, using the following algorithm:

 For each character in string1
 See if it has an entry in the map
 If it does, add 1 to the number stored there
 Otherwise, add an entry with the value 1

 Then, for each character in string2
 See if it has an entry in the map
 If it does, subtract 1 from the number stored there or return false if the value is

already 0
 Otherwise return false

 If the two String values had the same length and this process
completed without going below 0 in the map, return true

 Sorting libraries
 Custom comparators

 Start Project 4
 Get your teams figured out immediately!

	COMP 2000
	Last time
	Questions?
	Project 4
	Slide Number 5
	List Practice
	List<E> methods
	List practice 1 (Fizz Buzz)
	List practice 2 (a real job interview question)
	Maps
	Maps
	Concrete example
	JCF Map
	JCF implementation
	Code example
	JCF Set
	JCF implementation
	Map practice
	Map practice continued
	Upcoming
	Next time…
	Reminders

