
Week 12 - Wednesday

 What did we talk about last time?
 Exam 2 post mortem
 Java Collections Framework
 List
 ArrayList
 LinkedList

JOHN PRINE
1946-2020

 The List<E> interface is one of the biggest you'll ever see
 Here are a few important methods in it

Returns Method Description

boolean add(E element) Adds element to the end of the list

void add(int index, E element) Adds element before index

boolean addAll(Collection<? extends E> collection) Adds everything from collection to this list

void clear() Removes everything from this list

boolean contains(Object object) Returns true if this list contains object

E get(int index) Return the element at index

int indexOf(Object object) Returns the first index where something that
equals object can be found

boolean isEmpty() Returns true if the list is empty

boolean remove(int index) Remove the element at index

E set(int index, E element) Set the item at location index to element

int size() Returns the size of the list

 Create an ArrayList of String values to hold
 Prompt the user for a positive integer
 From 1 up to the number they enter, add the String equivalent

of that number to the list
 Exceptions:
 If the number is divisible by 3, add Fizz to the list instead
 If the number is divisible by 5, add Buzz to the list instead
 If the number is divisible by both, add Fizz Buzz to the list instead

 Output the list
 Example for 16:
 1, 2, Fizz, 4, Buzz, Fizz, 7, 8, Fizz, Buzz, 11,
Fizz, 13, 14, Fizz Buzz, 16

 There are n prisoners standing in a circle, about be executed
 The executions are carried out starting with the kth person,

and removing every successive kth person going clockwise
until no one is left

 Prompt the user for n and k
 Determine where a prisoner should stand in order to be the

last survivor
 For example, if n = 5 and k = 2, the order of executions would

be [1, 3, 0, 4, 2] (assuming 0-based numbering)
 Hint: Use a list and repeatedly remove indexes

 Maps are a kind of data structure that holds a (key, value) pair
 For example, a map might use social security numbers as keys and

have Person objects as the value
 In a map, the keys must be unique, but the values could be

repeated
 Both Java and C++ use the name map for the symbol table classes

in their standard libraries
 Python calls it a dictionary (and supports it in the language, not

just in libraries)
 Maps are also called symbol tables

 Maps are for you can imagine storing as
data with two columns, a key and a value

 In this way you can look up the weight of
anyone

 However, the keys must be unique
 Ahmad and Carmen might weigh the same, but

Ahmad cannot weight two different values
 There are multimaps in which a single key

can be mapped to multiple values
 But they are used much less often
 All you really need is a map whose values are

lists

Name
(Key)

Weight
(Value)

Ahmad 210

Bai Li 145

Carmen 105

Deepak 175

Erica 205

 The Java interface for maps is, unsurprisingly, Map<K,V>
 K is the type of the key
 V is the type of the value
 Yes, it's a container with two generic types

 Any Java class that implements this interface can do the
important things that you need for a map
 get(Object key)
 containsKey(Object key)
 put(K key, V value)

 Because the Java gods love us, they provided two main
implementations of the Map interface

 HashMap<K,V>
 Hash table implementation
 To be useful, type Kmust have a meaningful hashCode()method

 TreeMap<K,V>
 Balanced binary search tree implementation
 To work, type Kmust implement the compareTo()method
 Or you can supply a comparator when you create the TreeMap

 Let's see some code to keep track of some people's favorite
numbers

Map<String,Integer> favorites = new TreeMap<String,Integer>();

favorites.put("John", 42); // Autoboxes int value
favorites.put("Paul", 101);
favorites.put("George", 13);
favorites.put("Ringo", 7);
if(favorites.containsKey("George"))

System.out.println(favorites.get("George"));

 Java also provides an interface for sets
 A set is like a map without values (only keys)
 All we care about is storing an unordered collection of things
 The Java interface for sets is Set<E>
 E is the type of objects being stored

 Any Java class that implements this interface can do the
important things that you need for a set
 add(E element)
 contains(Object object)

 As with maps, there are two main implementations of the
Set interface

 HashSet<E>
 Hash table implementation
 To be useful, type Emust have a meaningful hashCode()method

 TreeSet<E>
 Balanced binary search tree implementation
 To work, type Emust implement the compareTo()method
 Or you can supply a comparator when you create the TreeSet

 An anagram is a word or phrase arrived at by scrambling the
letters of another word or phrase

 For example, "silent" is an anagram of "listen"
 We can use a HashMap to determine if one String is an

anagram of another
 We'll make a Map<Character,Integer> so that we can

store the number of times a letter appears

 Complete the method below that determines if string1 and string2
are anagrams, using the following algorithm:

 For each character in string1
 See if it has an entry in the map
 If it does, add 1 to the number stored there
 Otherwise, add an entry with the value 1

 Then, for each character in string2
 See if it has an entry in the map
 If it does, subtract 1 from the number stored there or return false if the value is

already 0
 Otherwise return false

 If the two String values had the same length and this process
completed without going below 0 in the map, return true

 Sorting libraries
 Custom comparators

 Start Project 4
 Get your teams figured out immediately!

	COMP 2000
	Last time
	Questions?
	Project 4
	Slide Number 5
	List Practice
	List<E> methods
	List practice 1 (Fizz Buzz)
	List practice 2 (a real job interview question)
	Maps
	Maps
	Concrete example
	JCF Map
	JCF implementation
	Code example
	JCF Set
	JCF implementation
	Map practice
	Map practice continued
	Upcoming
	Next time…
	Reminders

